By way of example we have depicted in Fig. 1 the profile of the bottom of the crater in a copper target
for qp =108 W/cm? and qy/q() = 2. It canbe seen from Fig. 2 that the velocity of motion of the front g depends
significantly on its curvature. Even when the energy density is uniformly distributed over the cross section
of the beam, i.e., when g, = q) (curve 2), the velocity g is appreciably less than the velocity of a planar
front (curve 1), While if q/q{) = 2 (curves 3 and 4), neglecting the curvature of the front leads to almost a
10-fold error in the determination of g in the range 10%-107 W/cm?,

Figure 3 shows the dependence of the rate of motion of the front g and the temperature T, onthe param-
eter vy. As pointed out in [1], formula (10') very roughly determines the pre-exponential factor in the kinetic
equation. The calculations show, however, that the magnitude of this parameter has only a small effect on the
results of the computations; varying v, by an order (from 10° to 10% em/sec) changes the velocity g only by
around 5%.

NOTATION

Ty, temperature of the center of the bottom of the crater; T,, temperature of the outermost points of the
front (@t r =b); g, stationary rate of deepening of the crater; p = (d*T/dt%)/(dT/d¢); & = 1/B?) x In(T4/T,),
distance along the X axis from the central point of the front to the isotherm with temperature T,y; h = /B In
(Ty/Tm), depth of the molten layer along the X axis; ry =(2,4/AB).
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GROUP PROPERTIES OF THE NONLINEAR
HEAT-CONDUCTION EQUATION AND THE
SOLUTION OF INVERSE PROBLEMS

V. V. Frolov UDC 536.526.011

We develop a numerical — experimental method of determining the thermophysical properties of
materials in which we use group-invariant solutions of the nonlinear heat-conduction equation,
We study the stability of a class of such solutions,

In [1] Ovsyannikov examined the problem of the group classification of the equation

ou o} ou

W9 (w2, (1)
ot 0x (f( ) ox )

i.e,, the problem of determining the fundamental group admitted by Eq. (1) for various forms of the function f
of the unknown solution,
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Equation (1) is obtained from the more general equation

P Lm 2 (2.9 | )
: ot ox 0x
through introduction of the new function u and the coefficient f:

u=[{pcdl,  [(u)= kipc. @)

Inthe same sense as the group classification problem solved in [1] this device appears to be a natural
one, as does also the repeated neglect of arbitrary constants (all considerations in [1] are taken "to within
equivalency," i.e., linear transformations of arbitrary variables are ignored). The problems we solve in
this paper, onthe other hand, require retaining (in explicit form) a maximum number of the free param-
eters and functions, since our goal is to use the invariant solutions of the heat-conduction equation to solve
inverse problems, i.e., to determine the coefficients of heat capacity and heat conduction, namely, cp
and k, as functions of the temperature,

1, Invariant Solutions of Eq. (2)

Equation (2) can be conveniently written in the equivalent form of a system of first-order quasilinear
equations; thus, .
Fy=pi—vp;=0; Fy=gqp,—u*=0. 4

Here we have introduced the notation
ou . oul
t=x', x=ux2 =y, — =yl b i,
“ ? dx P Ox!

The conditions for invariance of the differential manifold @) with respect to the operator X are of the
form

XF,=0, XF,=0, F =0, F=0, (5
where
i d 1tk 4 . - k._..@__'
X'—‘—’Ex axi "T‘gu Auk ’ X~X+§pl ap)ic ?
. d d
=D —PDiE): D= — Pl

(summation is taken over repeated Latin indices). The defining system of equations is represented by the
following relationships [expanded form of the conditions (5)]:

Ep1 — b VEu — VEp2 =0,
Ph @i+ 9Ep — 8 =0, (©)
pi=1vp3, opy=u
The dot above the functions ¢ and y denotes differentiation with respect to u. Relative to the coordinates

£l and 55 of the operator X, the system (6) is decomposable (owing to the arbitrariness and independence
of the variables pf, pd); its general solution can be written in the form

G=of B E‘x:{_ X% 4 0%+ e

R Y §q=<wvx+x)q+—§5'l,
Here

The arbitrary constants @, B8, ¥, 6, ¢, &, ", ware determined from conditions introduced below,
It is important to distinguish the following cases.

a) x(u) an arbitrary function. Inthis case o, B, ¢ cantake on arbitrary values, and 6 =a/2, n=
—&, v =¢ =0. The invariant solutions corresponding to this case cannot be used to solve inverse problems
without some additional assumptions on the form of the functions p(u) and y@) (see [2]).
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b) The function y(u) satisfies the equation
)C———X%_:m(x)z )

or (what amounts to the same thing) the equation
%4 % = (1+ o) (02 ®)
A constraint of this kind is introduced in such a way that if the function ¢(y) is chosen arbitrarily,
then the other function § (respectively, ¢) is obtained by solving Eq. (7) [respectively, Eq. (8)]. In this
case the constants o, B, €, ¢ can be selected arbitrarily; 7y, 6, » and w are chosen by means of the con-
ditions
y(1 + 40) =0, af{—26=0, w64 0l =0.

It is convenient to have an explicit form of the relationship between p and y, specified by the condi-
tions (7) and (8). Integrating Eq. (8), we find

u 1

p=c®) (Cl +C, Y c(v) dv)_ e o=y )

0
Similarly, starting from Eq. (7), we readily obtain

g‘ ds )du+C2]. (10)

¢ (u) = @) exp [01 S’tp(v) exp (m e

4 §
Here Cy and C, are arbitrary constants of integration,

We consider the cases y = 0 and v # 0 separately.

b.l) vy =0, We obtain a set of linearly independent operators of a Lie algebra from the general
form of an operator of the one-parameter subgroup:
' 3

Lo g o YEY 9
+[(€0Yx—r")4*r A} P

9

_ A O BRI )0_ v+l
X B ooy @) =@+~ ( spbrpe) Doy LR L

4

taking, inturn, one of the four free parameters o, 8, €, ¢ tobe nonzero and determining the remaining
parameters from the relations o + ¢ =26, n + § +w; = 0. As a basis we can thus choose the operators

){l:__a_.Y XZZ.G_’ X3:2t_§_+x..a___q.a_,
ot ox ot ox Jq
0 2 0 0
Xy=x ——+—— —— (14 20)g— .
a E + 7 on (1+ 20)g 3

We consider the possible forms of the invariant solutions in this case,

b.1.1) X = X;; the invariants are J; =x, Jy =u; u =ux).
b.1.2) X = X,; the invariants are J; =t, J, =u; u =uf).
b.1.3) X = X;; the invariants are J; = x/t, J, = u, J; = oVi,
The solution has the form

u=f(l); qg=FU)VLi
b.l4) X =X; — aXy the invariants are J; = ot +x, J, =u, J3 =q.
The solution has the form

u=f(l) q=F(y.
b.1.5) X = X;; the invariants are J; =t, J, = x(u) — 2 In x, J3 = qx® ¥2 9,
The solution is given by the relationships
Lu(x, H =7+ 2Inx; g = x—(+2) F(f).

b.1.6) X = X, — aX;; the invariants are J; = etx®, J, = y@) — 2 Inx, J; = qx{ +24,
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The solution is determined from the relationships
Aalx, Ol =f(J)+2Inx  g=x—U+W F(J),
b.1.7) X‘= /) (X, — Xy); the invariants are J; =x, Jy=x +Int, J3 = qt"w.
The solution is determined by means of the relationships
Xu(x, O] =f{J)—Int g=1t2F{J).
b.1.8) X = X5 + (/5)(X; — X,); the invariants are J; =x/ ¥%, Jy =% + (/;) Int, Jy = qx(1—w).

The solution is determined by means of the relationships
Xux, Dl=Ffl)— —;—lnt; g =xle=D F(J).

b.1.9) X = (/) (X, — X;3) + aXy; the invariants are J; =eX%®, J, =y — (/a)x, J =g~ %,

The solution is determined by means of the relationships
1
Klulx, ) =Ff{Jy) + —&—x; g=1oF(Jy.

The functions f(J;) and F(Jy), which appear in the expressions for u(x, t) and q(x, t), are obtained by
solving ordinary differential equations; these latter are obtained, inturn, by substituting u and q into the
system of equations (4). As an example, we consider the case

L) = f(x)—Int, q =1 F (x).

Using the relations
g 1 g0 _df oy
ot 14 ox dx

Ou \2 M 0% d*f
ox? dx?

ox -
and Eq. @), we readily see that f(x) is a solution of the equation

f'—ofyR+ei=0. , a1
Correspondingly, for F(x) we obtain the equation

dinF ) def
dx dx

The solution of Eqs. (11) and (12) may be reduced to quadratures:

11=0. (12)

Yy
"y

dg

=+ =5 =x—X, |+20%0 (13)
Y R g e
exp Cq
e (oG e e (14)
X xl) S(C3—-§) g; + 0] y
Ce
x,? —1 N
F(x) = Cyexp j(—;‘%) dE 9@ =expf ). (5)

X

Here C3, C4, C; are constants of integration,

We return now to the case y # 0, i.e., v =—~1/4,

b.2) ¥ = 0. Inadditionto the operators Xj, X, X;, and X, we can write down yet ancther linearly
indeperndent operator upon varying v:

x* 0 x 0 W) |
X, =— — 4+ — — — 4 OX - 3
T4 ox % 6u+(x B q, oq

we can then also write down new types of invariant solutions connected with this operator.
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b.2.1) X = X;; the invariants are J; =t, Jy=x — 4 In x.
The solution is given by the relationship
Ywy=f{t)+4nx.
b.2.2) X = X; — aXy; the invariants are J; =t — 4a/x, =y —4 Inx.
The solution is given by the relationship
Y =f(,)-+4Inx.
b.2.3) X = X + a (X, — X3); the invariants are J; = /X80 5 =y ) + (Ba/x) — 4 Inx,
The solution is given by the relationship

X(u):f(]l)—i—éllnx—&«.
x

By forming linear combinations of the operators X;, X,, ..., X5 we can obtain many special forms
of invariant solutions of the system (4). It is a well~-known fact that there are only a few essentially dis-
tinct solutions, i.e., solutions not obtainable from one another by applying a particular transformation of
the fundamental group. From the point of view of applications, however, it is of no consequence whether
the applicable solutions are or are not esserntially distinct; the only thing of importance is that the solu-
tions be of a "suitable" form.

2., Application to the Solution of Inverse Problems

Consider the following inverse problem from the theory of heat conduction, We wish to find, for a
given solution of the boundary-value problem,
Oy ((p Qi) =0, x€(xy %), 1€l 4,
ox o0x
. (16)
u(xov t) == @y (t)v u(xl, t) ={ (t)v u(x, to) =u (x)v

where ¢ and y are positive functions of the temperature belonging to the classes C°® and ¢!, a pair of func-
tions (@, ¢) which, when substituted into Eq. (16), would make the latter an identity. In constructing a so-
lution of this problem we can use the invariant solutions infroduced in Sec, 1. We give an example below
illustrating this approach in detail,

We consider an invariant solution corresponding to the operator X, — X;. The temperature field
u(x, t), inthis case, must satisfy the condition

Yu(x, H] =[x —Inf,

the heat flow q =t@F(x). The assumption we make as to the possible form of the functions ¢(u) and ¢ (@) is
conditioned by the fact that these functions are connected through one of the pair of relations (9) and (10).
The functions f(x) and F(x) are given by the expressions (13)-(15)., It is important to note that these latter
functions do not contain any of the functions associated with the unknown characteristics c(u) and ¢{u); they
can be determined numerically or can be obtained in the form of approximate analytic expressions, If
f*(x, C3, C,) is the solution of Eq. (11), the temperature field u(x, t) can now be found from the relation-
ship

u(f»l)

C,+G, \ c(@ydv =exp[(l +o)(Inf—f*(x, C;, CY)I.
0

It is convenient to introduce the new time variable r =t%, Interms of this new time variable the heat flux
can be written in the form

q(v)=F*(x, G, Cy Cy)r.
Let the following conditions be satisfied:
a) the unknown heat capacity is an element of an m~parameter family of functions; thus,

c=cu, by, by, ..., b,);
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b) at the ends of the interval [x;, x;]boundary conditions of the form
gxp =47 p=0,1 1271,

are maintained, where the constants Ap‘are arbitrary, but aré such that for some values of the constants
of integration C;, C,, and C; the following equations are satisfied:

F*(x, C; Cy C=4, p=0,1

p?

c) the values of the temperature up; = uxp, Tj) are known at the points x, at the times Tj =1, 2, .
...) [the general number of values of Upj is (m + 5)1;

d) the initial distribution u(x;, 7) satisfies the conditions of invariance.

Then the solution {c(u, I;); ¢c, Ci, Cyy & } of the inverse problem in question is determined from
the system of equations
llpj .
c,+C, g c(v, by, by ..., bm)do:exp[(1+m)<L1m,.—f*(xp,cs, c4))],
b (]
p=0,1, j=1,2 ...

Indeed, upon eliminating the unknown quantities f* (xp, C;3, C4), we obtain a system of (m + 3} equa-
tions involving the constants Cy and C, and the parameters w, by, ..., bm.

The assumptions made above are completely realistic and attainable in practice, except for the one
pertaining to the possibility of realizing an invariant distribution at the initial time 7, This latter condi-
tion, however, canbe dropped. The fact of the matter is that the invariant solutions possess a peculiar
stability, which amounts to the following: if at the boundary points Xp o = 0,1) the heat flux q(xp, 7) or
the temperature u(xp, r) satisfies the conditions of invariance, then, independently of the initial distribu-
tion u(x, ry), the solution ufx, ) converges asymptotically to the invariant solution. This can be seen as
follows. Consider the function ®(x, t), defined by the expression

D(x, 1) =X{u(x, )] + Int.
The required property is obviously equivalent to the following condition:
lim @ (x, ) = f (x).
oo

For the function F = exp (— w®) the boundary conditions are stationary and have the most convenient
form
oF
—67(’51)’ f) =By, p=0,1
The equation for F(x, t), subject to perturbations of the initial conditions (®(x, ty) # f), is obtained
by substituting F[®(u)] into Eq. (16):
1
—_—— 2
oF _ K[Fl=—wF+F © OF

ds Gs? s s=Int; F(x, t)) = exp[— P (x, {)]. an

1t is readily seen that the function F 4 (x) = exp (—whis a stationary solution of Eq. (17). We show now that
this solution is uniformly and asymptotically stable (see [3D.

. The nonlinear differential operator K on the right side of Eq. (17) has at the point F 4 the derivative
Kp,:
0%y
ox?

Kplyl=—(1+o)y+ ¢

Considering the function w = exp (—f) as an operator (uniformly positive), we can state that the deri-
vative K'F* is a w uniformly dissipative operator. In fact,

, e [y
@Ky, 0 = — U+ o)lyis — | (5 ax

Thus, by virtue of the generalized theorem of Lyapunov (see [3]), the spectrum of the operator K’F *
lies inthe left half-plane, and, consequently (see [3]), the stationary solution F x = exp (— wi(x) is
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uniformly and asymptotically stable. Fairly accurate estimates of the rate of decrease of the norm of the

perturbation h = F — Fx can be obtained from the expression
Xy xy

D
2|2

Here
y=exp[[*(x, G C,, 0]
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